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Medical thermography has proved to be useful in varicus medical applications including the detection of
breast cancer where it is able to identify the local temperature increase caused by the high metabolic
activity of cancer cells. It has been shown to be particularly well suited for picking up tumours in their
early stages or tumours in dense tissue and outperforms other modalities such as mammography for these
cases. In this paper we perform breast cancer analysis based on thermography, using a series of statistical
features extracted from the thermograms quantifying the bilateral differences between left and right
breast areas, coupled with a fuzzy rule-based classification system for diagnosis. Experimental results on
a large dataset of nearly 150 cases confirm the efficacy of our approach that provides a classification

© 2008 Elsevier Ltd. All rights reserved.

1. introduction

Advances in camera technologies and reduced equipment costs
have lead to an increased interest in the application of thermogra-
phy in the medical field [1]. Thermal medical imaging (or medical
infrared imaging) uses a camera with sensitivities in the infrared to
provide a picture of the temperature distribution of the human body
or pares thereof. It is a non-invasive, non-contact, passive, radiation-
free technique that can also be used in combination with anatomi-
cal investigations based on X-rays and three-dimensional scanning
techniques such as CT and MRI and often reveais problems when
the anatomy is otherwise normal. It is well known that the radiance
from human skin is an exponential function of the suiface temper-
ature which in turn is influenced by the level of blood perfusion in
the skin. Thermal imaging is hence well suited to pick up changes
in blood perfusion which might occur due to inflammation, angio-
genesis or other causes. Asymmetrical temperature distributions as
weil as the presence of hot and cold spots are known to be strong
indicators of an underlying dysfunction [2].

Breast cancer is the most commonly diagnosed form of cancer
in women accounting for about 30% of ail cases [3]. Despite earlier,
less encouraging studies, which were based on fow-capability and
poorly calibrated equipment, infrared imaging has been shown to
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e well suited for the task of detecting breast cancer, in particular
when the tumour is in its early stages or in dense tissue [4,5]. Early
detection is important as it provides significantly higher chances of
survival [6] and in this respect infrared imaging outperforms the
standard method of mammography which can detect tumours only
once they exceed a certain size. On the other hand, tumours that are
small in size can be identified using thermography' due to the high
metabolic activity of cancer cells which leads to an increase in local
temperature that can be picked up in the infrared,

In this paper we perform breast cancer analysis based on ther-
mography, using a series of statistical features extracted from the
thermograms coupled with a fuzzy rule-based classification sys-
tem for diagnosis. The features stem from a comparison of left
and right breast areas and quantify the bilateral differences en-
countered. Following this asymmetry analysis the features are fed
to a fuzzy classification system. This classifier is used to extract
fuzzy if-then rules based on a training set of known cases, Exper-
imental resuits on a set of neariy 150 cases show the proposed
system to work well accurately classifying about 80% of cases, a
performaince that is comparable to other imaging modalities such as
mammography.

The rest of the paper is organised as follows: the following section
covers the features we extract from the breast thermograms, Section
3 introduces the fuzzy rule-based classifier we employ while Section

! According to Ref. |7] the average tumour size undetected by mammography
is 1.66 cm compared to only 1.28cm by thermography.
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4 presents experimental results obtained. Section 5 concludes the
paper,

2. Breast thermogram feature analysis

Thermograms for breast cancer diagnosis are usually raken based
on a frontal view andfor some lateral views. In our work we restrict
out attention to frontal view images. As has been shown earlier, an
effective approach to automatically detect cancer cases is to study
the symmetry between the left and right breast [8]. In the case of
cancer presence the tumour will recruit blood vessels resuiting in
hot spots and a change in vascular pattern, and hence an asymme-
try between the temperature distributions of the two breasts. On
the other hand, symmetry typically identifies healthy subjects. We
therefore follow this approach and segment the areas correspond-
ing to the left and right breast from the thermograms. While some
advances have heen made in frying to automatically segment breast
regions from thermograms [9] we found that they are not robust
enough yet to account for the variety of cases present in our dataset,
In our work, the regions corresponding to the left and right breast
were therefore manually segmented by a medical expert, Once seg-
mented, we convert the breast regions to a polar co-ordinates repre-
sentation as it simplifies the calculation of several of the features that
we employ. A series of statistical features is then calculated to pro-
vide indications of symmetry between the regions of interest (i.e. the
two breasts). In the following sections we describe the features we
employ.

2.1. Basic statistical features

Clearly the simplest feature to describe a temperature distribu-
tion such as those encountered in thermograms is to calculate its
statistical mean. As we are interested in symmetry features we cal-
culate the mean for both breasts and use the absoiute value of the
difference of the two. Similarly, we calculate the standard tempera-
ture deviation and use the absolute difference as a feature. Further-
more we employ the absolute differences of the median temperature
and the 90-percentile as further descriptors.

2.2. Moments

Image moments are defined as

M-1N-1
mpg =y 3 xylgxy) (1)
y=0 x=0

where x and y define the pixel location and N and M the image size.
We utilise moements mgy and g which essentially describe the
centre of gravity of the breast regions, as well as the distance (both
in x and y direction) of the centre of gravity from the geometrical
centre of the breast, For all four features we calculate the absolute
differences of the values between left and right breast.

2.3, Histogram features

Histograms record the frequencies of certain temperature ranges
of the thermograms. In our work we construct normalised his-
tograms for both regions of interest (i.e., feft and right breast) and
use the cross-correlation between the two histograms as a features.
From the difference histogram (i.e., the difference between the two
histograms) we compute the absolute value of its maximum, the
number of bins exceeding a certain threshold (empiricaily set to
0.01 in our experiments), the number of zero crossings, energy and
the difference of the positive and negative parts of the histogram.

2.4, Cross co-occurrence matrix

Co-occurrence matrices have been widely used in texture recog-
nition tasks [10] and can be defined as

Lk R - -
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with

iP1 — P2l =max |x; — Xzl ly1 — y2l (3)

where T; and T; denote two temperature values and (x,y,) denote
pixel locations. In other words, given a temperature T; in the ther-
mogram, y gives the probability that a pixel at distance k away is of
temperature T;. In order to arrive at an indication of asymmetry be-
tween the two sides we adopted this concept and derived what we
call a cross co-occurrence matrix defined as
ik ‘
U1 H2)) = - 51[155261(23@2 €2}, 1py —pal = K] {4)
ie. temperature values from one breast are related to temperatures
of the second side,

From this matrix we can extract several features [10]. The ones
We dre using are
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We further calculate the first four moments m;-my of the matrix

mp =" > (k— 1Py (9)
ko

2.5. Mutual infoermation

The mutual information MI between two distributions can be
calculated from the joint entropy H of the distributions and is defined
as

MI=H +Hp+H (10)
with
Hy == " Pi(i)logypy(k)
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and is empioyed as a further descriptor.
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2.6. Fourier analysis

As final feature descriptors we calculate the Fourier spectrum
and use the difference of absolute values of the ROI spectra. The
features we adopt are the difference maximum and the distance of
this maximum from the centre.

2.7, Summary

To summarise we characterise each breast thermogram using the

following set of features: four basic statistical features, four moment
features, eight histogram features, eight cross co-occurrence fea-
ures, mutual information and two Fourier descriptors, We further
apply a Laplacian filter to enhance the contrast and calculate another
subset of features (the eight cross co-occurrence features together
with mutual information and the two Fourier descriptors) from the
resulting images. In total we hence end up with 38 descriptors per
breast thermogram which describe the asymmetry between the two
sides, We normalise each feature o the interval [0;1] to arrive at
comparabie units between descriptors.

3. Fuzzy rule-based classification

While in the past fuzzy rule-based systems have been applied
mainly to control problems [11], more recently they have also been
applied to pattern classification problems. Various methods have
been proposed for the automatic generation of fuzzy if-then rules
from nuimerical data for pattern classification [12-14] and have been
shown to werk well on a variety of problem domains.

Pattern classification typically is a supervised process where,
based on set of training samples that have been manually classi-
fied by experts, a classifier is derived that automatically assigns un-
seen data sample to the pre-defined classes. Let us assume that our
pattern classification problem is an n-dimensional problem with €
classes (in clinical diagnosis such as the detection of breast cancer
C is typically 2) and m given training patterns Xp = (Xp1. Xp2. oo Xpir)s
p=1,2,...,m Without loss of generality, we assume each aitribute
of the given training patterns to be normalised into the unit interval
[0, 1]; that is, the pattern space is an n-dimensional unit hypercube
[0, 11", In this study we use fuzzy if-then rules of the following type
as a base of our fuzzy rule-based classification systems:

Rule R; : If x; is Ajp and ... and xy is Apy,
then Class G with CF;, j=1,2,..,,N (13)

where R; is the label of the j th fuzzy if-then rule, Ap, ..., Ay are
antecedent fuzzy sets on the unit interval {0, 1], G; is the consequent
class (i.e. one of the C given classes), and CF is the grade of certainty
of the fuzzy if-then rule R;. As antecedent fuzzy sets we use triangular
fuzzy sets as in Fig. 1 where we show a partition of the unit interval
into a number of fuzzy sets.

Membership value

/

0.0 1.0
Atribute value

Fig. 1. Membership function.

Our fuzzy rule-based classification system consists of N fuzzy
if-then rules each of which has a form as in Eq. (13). There are
two steps in the generation of fuzzy if-then rules: specification of
antecedent part and determination of consequent class G and the
grade of certainty CF;. The antecedent part of fuzzy if-then rules is
specified manually. Then the consequent part {i.e. consequent class
and the grade of certainty) is determined from the given training
patterns [15]. In Ref. [16] it is shown that the use of the grade of
certainty in fuzzy if-then rules allows us to generate comprehensi-
ble fuzzy rule-based classification systems with high ciassification
performance,

3.1. Fuzzy rule generation

Let us assume that m training patterns Xp = (Xpi, .o Xpn) P =
1.....m, are given for an n-dimensional C-ciass pattern classification
problem. The consequent class C; and the grade of certainty CF; of
the if-then rule are determined in the following two steps;

(1) Calculate f,.. () for Class h as

Betass n0) = Z ﬂj(xp) (14)
KpeClass h

where

H{Xp) = Hi(Xp1 ). Hin{Xpn) (15)

and pi;,(-) is the membership function of the fuzzy set A In this
section we use triangular fuzzy sets as in Fig, 1.
(2) Find Class h that has the maximum value of Beiass 1():

Baass 10)= . glféc[ﬂdass 0 (16)

If two or more classes take the maximum value, the consequent
class (; of the rule R; cannot be determined uniquely. In this case,
specify Cj as ;= ¢b. If a single class h takes the maximum value, let
G; be Class h. The grade of certainty CF; is determined as

_ 'GCIass hU) -

CF == = (17
¢ 2.h ﬂCIass wlf)

with

Z ~h 16) 55 ]

ﬁ: Eh,.h Class 1) (18}

-1
3.2. Fuzzy reasoning

Using the rule generation procedure outlined above we can gen-
erate N fuzzy if-then rules as in Eq. (13). After both the consequent
class G; and the grade of certainty CF; are determined for ali N rules,

d New pattern X = (x1,...,Xp) can be classified by the following pro-
cedure:

(1) Calculate ¢gyaes p{x) for Class i, j=1,....C, as
Ulctass p{X) = Max{py(x) - CF|C = hy {(19)
(2} Find Class K that has the maximum value of Cleiass h(X):
cass 1 (X) = , gﬁgcmam X (20)
If two or more classes take the maximum vaiue, then the cias-

sification of x is rejected (i.e. x is left as an unclassifiable pattern},
otherwise we assign x to Class i’
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3.3. Rule reduction

It is generally know that any type of rule-based system suffers
from the course of dimensionality. That is, the number of gener-
ated rules exponentially increases with the number of attributes in-
volved. Our fuzzy rule-based classifier is no exception, in particular
considering the variety of features we are using as input. For exam-
ple, based on the selection of the 38 features we employ, the classi-
fier would generate 2°% =2.75 x 10" rules even if we only partition
each axis into two which is clearly prohibitive both in terms of stor-
age requirements and computational complexity, In our approach
we emplay a genetic algorithm that evolves to select a fixed, small,
number of rules (100 in our experiments) without sacrificing classi-
fication performance [14]. We aiso apply a cost term in the classifi-
cationrrules to be able to put more emphasis on correctly identifying
maligant cases [17].

4. Experimental results

For our experiment we utilised a dataset of 146 thermograms (29
malignant and 117 benign cases). It should be noted that this dataset
is significantly larger than those used in previous studies (e.g. Ref.
[81}. For all thermograms we calculate a feature vector of length 38
as outlined in Section 2. We then train the fuzzy classifier explained
in the previous section using these data to obtain a classifier that is
capable of distinguishing cancer patients from healthy individuals.

As a first test we wish to examine how well the classifier is able
to separate the two classes. We therefore train the classification sys-
tem on all available data {i.e,, on all 146 cases) and then test it on ail
samples. That is, for this experiment the training and test data are
identical. We experiment with different number of fuzzy partitions
per attribute. Preliminary experiments showed that fuzzy classifiers
with less than 10 divisions per attribute were not sufficiently com-
plex to handle the data at hand [17]. On the other hand, as explained
above, finer partitioning of the attribute data results in a wider search
space and hence a computational expensive derivation of the classi-
fier. We therefore restrict our attention to classifiers with between
10 and 15 partitions per attribute,

Table 1 shows the resuits in terms of classification rate (i.e., the
percentage of correctly classified patterns), sensitivity (i.e., the prob-
ability that a case identified as malignant is indeed malignant) and
specificity (i.e., the probability that a case identified as benign is in-
deed benign). Looking at the results we can see that classification
performance iies roughly between 92% and 98% with the best perfor-
mance, a sensitivity of about 93% coupled with a specificity of about
98% being achieved with 15 partitions. We natice that even though
the classifiers are tested on the same data that were used for training
we do not achieve perfect classification. This suggests that we have
indeed a challenging dataset to deal with as the two classes cannot
eveni be separated by the non-linear division our fuzzy classifier is
capable of,

While results on training data provide us with some basic indica-
tion of the classification performance, only validation on unseen test
data will provide real insights into the generalisation capabilities of
a classifier as normally classification accuracy on such unseen pat-
terns is lower than that achieved in previously encountered training
samples. We therefore perform standard 10-fold cross-validation on
the dataset where the patterns are split into 10 disjoint sets and the
classification performance of one such set based on training the clas-
sifier with the remaining 90% of samples evaluated in turn for all 10
combinations. Again, we explore classifiers with between 10 and 15
partition per attribute.

The results are listed in Table 2. From there we can see that—as
expected—classification rates are lower than the ones we achieved
on training data, with the best results just below 80% providing both

Tahle 1

Results of breast cancer thermogram classification on training data

# Fuzzy partitions Classification rate (%) Sensitivity (%) Specificity (%)

10 91.78 82.76 94,02
11 92.47 8276 96.58
12 9247 86.21 95,73
i3 97.26 93,10 98.30
14 9452 89.66 95,73
it 97.95 93.10 99,15
Table Z

Results of breast cancer thermogram classification on test data based on 10-fold
cross-validation

# Fuzzy partitions Classification rate (%) Sensitivity (%) Specificity (%)

10 78.05 74.14 79.02
11 76,57 72.41 77.60
12 77.33 7552 77.78
13 78.05 77.42 78.21
14 79,53 79.86 79.49
15 7743 76.00 7178

a sensitivity and specificity of almost 80%. That there is a fairly sig-
nificant drop in terms of classification performance once again con-
firms the difficuity of the dataset. However, it should be noted that
a correct classification rate of 80% is comparable to thar achieved
by other techniques for breast cancer diagnosis with mammogra-
phy typically providing about 80%, uitrasonography about 70%, MRI
systems about 75% and DOBI (optical systems) reaching about 80%
diagnostic accuracy [18]. We can therefore conclude that our pre-
sented approach is indeed useful as an aid for diagnosis of breast
cancer and should prove even more powerful when coupled with
another modality such as mammography. We want to stress that
it is indeed as part of such a combination that we see the primary
use of thermography in breast cancer analysis rather than conduct-
ing cancer diagnosis based solely on thermal imaging as some other
researchers suggest.

5. Conclusions

In this paper we presented a computational approach to the diag-
nosis of breast cancer based on medical infrared imaging. Asymmetry
analysis of breast thermograms is performed using a variety of sta-
tistical features. These features are then fed into a fuzzy if-then rule-
based classification system which outputs a diagnostic prediction of
the investigated patient. Experimental results on a large dataset of
thermograms confirm the efficacy of the approach providing a clas-
sification accuracy of about 80% which is comparable to the perfor-
mance achieved by other techniques including mammography.
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